Satisfiability threshold for random XOR-CNF formulas

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximating The Satisfiability Threshold For Random K-Xor-Formulas

In this paper we study random linear systems with k variables per equation over the finite field GF (2), or equivalently k-XOR-CNF formulas. In a previous paper Creignou and Daudé proved that the phase transition for the consistency (satisfiability) of such systems (formulas) exhibits a sharp threshold. Here we prove that the phase transition occurs as the number of equations (clauses) is propo...

متن کامل

Smooth and sharp thresholds for random k-XOR-CNF satisfiability

The aim of this paper is to study the threshold behavior for the satisfiability property of a random k-XOR-CNF formula or equivalently for the consistency of a random Boolean linear system with k variables per equation. For k ≥ 3 we show the existence of a sharp threshold for the satisfiability of a random k-XOR-CNF formula, whereas there are smooth thresholds for k = 1 and k = 2. Mathematics S...

متن کامل

Linear CNF formulas and satisfiability

In this paper, we study linear CNF formulas generalizing linear hypergraphs un-der combinatorial and complexity theoretical aspects w.r.t. SAT. We establish NP-completeness of SAT for the unrestricted linear formula class, and we show the equiv-alence of NP-completeness of restricted uniform linear formula classes w.r.t. SATand the existence of unsatisfiable uniform linear witne...

متن کامل

Satisfiability of Almost Disjoint CNF Formulas

We call a CNF formula linear if any two clauses have at most one variable in common. Let m(k) be the largest integer m such that any linear k-CNF formula with ≤ m clauses is satisfiable. We show that 4 k 4e2k3 ≤ m(k) < ln(2)k4. More generally, a (k, d)-CSP is a constraint satisfaction problem in conjunctive normal form where each variable can take on one of d values, and each constraint contain...

متن کامل

The Hard Problems Are Almost Everywhere For Random CNF-XOR Formulas

Recent universal-hashing based approaches to sampling and counting crucially depend on the runtime performance of SAT solvers on formulas expressed as the conjunction of both CNF constraints and variable-width XOR constraints (known as CNF-XOR formulas). In this paper, we present the first study of the runtime behavior of SAT solvers equipped with XOR-reasoning techniques on random CNF-XOR form...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Applied Mathematics

سال: 1999

ISSN: 0166-218X

DOI: 10.1016/s0166-218x(99)00032-3